Search results for "Feynman integral"
showing 10 items of 20 documents
Rationalizability of square roots
2021
Abstract Feynman integral computations in theoretical high energy particle physics frequently involve square roots in the kinematic variables. Physicists often want to solve Feynman integrals in terms of multiple polylogarithms. One way to obtain a solution in terms of these functions is to rationalize all occurring square roots by a suitable variable change. In this paper, we give a rigorous definition of rationalizability for square roots of ratios of polynomials. We show that the problem of deciding whether a single square root is rationalizable can be reformulated in geometrical terms. Using this approach, we give easy criteria to decide rationalizability in most cases of square roots i…
One-loop integrals with XLOOPS-GiNaC
2001
We present a new algorithm for the reduction of one-loop tensor Feynman integrals within the framework of the XLOOPS project, covering both mathematical and programming aspects. The new algorithm supplies a clean way to reduce the one-loop one-, two- and three-point Feynman integrals with arbitrary tensor rank and powers of the propagators to a basis of simple integrals. We also present a new method of coding XLOOPS in C++ using the GiNaC library.
RationalizeRoots: Software Package for the Rationalization of Square Roots
2019
The computation of Feynman integrals often involves square roots. One way to obtain a solution in terms of multiple polylogarithms is to rationalize these square roots by a suitable variable change. We present a program that can be used to find such transformations. After an introduction to the theoretical background, we explain in detail how to use the program in practice.
The Elliptic Sunrise
2020
In this talk, we discuss our recent computation of the two-loop sunrise integral with arbitrary non-zero particle masses in the vicinity of the equal mass point. In two space-time dimensions, we arrive at a result in terms of elliptic dilogarithms. Near four space-time dimensions, we obtain a result which furthermore involves elliptic generalizations of Clausen and Glaisher functions.
Simple differential equations for Feynman integrals associated to elliptic curves
2019
The $\varepsilon$-form of a system of differential equations for Feynman integrals has led to tremendeous progress in our abilities to compute Feynman integrals, as long as they fall into the class of multiple polylogarithms. It is therefore of current interest, if these methods extend beyond the case of multiple polylogarithms. In this talk I discuss Feynman integrals, which are associated to elliptic curves and their differential equations. I show for non-trivial examples how the system of differential equations can be brought into an $\varepsilon$-form. Single-scale and multi-scale cases are discussed.
Differential equations for Feynman integrals beyond multiple polylogarithms
2017
Differential equations are a powerful tool to tackle Feynman integrals. In this talk we discuss recent progress, where the method of differential equations has been applied to Feynman integrals which are not expressible in terms of multiple polylogarithms.
Causality and Loop-Tree Duality at Higher Loops
2019
We relate a $l$-loop Feynman integral to a sum of phase space integrals, where the integrands are determined by the spanning trees of the original $l$-loop graph. Causality requires that the propagators of the trees have a modified $i\delta$-prescription and we present a simple formula for the correct $i\delta$-prescription.
Numerical evaluation of iterated integrals related to elliptic Feynman integrals
2021
We report on an implementation within GiNaC to evaluate iterated integrals related to elliptic Feynman integrals numerically to arbitrary precision within the region of convergence of the series expansion of the integrand. The implementation includes iterated integrals of modular forms as well as iterated integrals involving the Kronecker coefficient functions $g^{(k)}(z,\tau)$. For the Kronecker coefficient functions iterated integrals in $d\tau$ and $dz$ are implemented. This includes elliptic multiple polylogarithms.
Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections
2018
We present the powerful module-intersection integration-by-parts (IBP) method, suitable for multi-loop and multi-scale Feynman integral reduction. Utilizing modern computational algebraic geometry techniques, this new method successfully trims traditional IBP systems dramatically to much simpler integral-relation systems on unitarity cuts. We demonstrate the power of this method by explicitly carrying out the complete analytic reduction of two-loop five-point non-planar hexagon-box integrals, with degree-four numerators, to a basis of 73 master integrals.
Feynman integrals and iterated integrals of modular forms
2017
In this paper we show that certain Feynman integrals can be expressed as linear combinations of iterated integrals of modular forms to all orders in the dimensional regularisation parameter $\varepsilon$ . We discuss explicitly the equal mass sunrise integral and the kite integral. For both cases we give the alphabet of letters occurring in the iterated integrals. For the sunrise integral we present a compact formula, expressing this integral to all orders in $\varepsilon$ as iterated integrals of modular forms.